Showing 1 - 10 of 29
A modification of the self-perturbed Kalman filter of Park and Jun (1992) is proposed for the on-line estimation of models subject to parameter instability. The perturbationterm in the updating equation of the state covariance matrix is weighted by the measurement error variance, thus avoiding...
Persistent link: https://www.econbiz.de/10010851262
Persistent link: https://www.econbiz.de/10011689787
Persistent link: https://www.econbiz.de/10010339076
A modification of the self-perturbed Kalman filter of Park and Jun (1992) is proposed for the on-line estimation of models subject to parameter in stability. The perturbation term in the updating equation of the state covariance matrix is weighted by the measurement error variance, thus avoiding...
Persistent link: https://www.econbiz.de/10010402289
A modification of the self-perturbed Kalman filter of Park and Jun (1992) is proposed for the on-line estimation of models subject to parameter instability. The perturbation term in the updating equation of the state covariance matrix is weighted by the measurement error variance, thus avoiding...
Persistent link: https://www.econbiz.de/10010859431
A modification of the self-perturbed Kalman filter of Park and Jun (1992) is proposed for the on-line estimation of models subject to parameter instability. The perturbation term in the updating equation of the state covariance matrix is weighted by the measurement error variance, thus avoiding...
Persistent link: https://www.econbiz.de/10010456954
Since the advent of Markov chain Monte Carlo (MCMC) methods in the early 1990s, Bayesian methods have been proposed for a large and growing number of applications. One of the main advantages of Bayesian inference is the ability to deal with many different sources of uncertainty, including data,...
Persistent link: https://www.econbiz.de/10012606031
Since the advent of Markov chain Monte Carlo (MCMC) methods in the early 1990s, Bayesian methods have been proposed for a large and growing number of applications. One of the main advantages of Bayesian inference is the ability to deal with many different sources of uncertainty, including data,...
Persistent link: https://www.econbiz.de/10012586923
Persistent link: https://www.econbiz.de/10012300691
This paper proposes a methodology for modelling time series of realized covariance matrices in order to forecast multivariate risks. The approach allows for flexible dynamic dependence patterns and guarantees positive definiteness of the resulting forecasts without imposing parameter...
Persistent link: https://www.econbiz.de/10005440044