Showing 1 - 10 of 21
This paper proposes a methodology for modelling time series of realized covariance matrices in order to forecast multivariate risks. The approach allows for flexible dynamic dependence patterns and guarantees positive definiteness of the resulting forecasts without imposing parameter...
Persistent link: https://www.econbiz.de/10005440044
Using a unique high-frequency futures dataset, we characterize the response of U.S., German and British stock, bond and foreign exchange markets to real-time U.S. macroeconomic news. We find that news produces conditional mean jumps, hence high-frequency stock, bond and exchange rate dynamics...
Persistent link: https://www.econbiz.de/10005440071
This paper applies three universal approximators for forecasting. They are the Artificial Neural Networks, the Kolmogorov-Gabor polynomials, as well as the Elliptic Basis Function Networks. Even though forecast combination has a long history in econometrics focus has not been on proving loss...
Persistent link: https://www.econbiz.de/10005012487
We propose a parametric state space model with accompanying estimation and forecasting framework that combines long memory and level shifts by decomposing the underlying process into a simple mixture model and ARFIMA dynamics. The Kalman filter is used to construct the likelihood function after...
Persistent link: https://www.econbiz.de/10009150791
We assess the predictive accuracy of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set 248 multivariate models that differ in their...
Persistent link: https://www.econbiz.de/10009492823
What drives volatility on financial markets? This paper takes a comprehensive look at the predictability of financial market volatility by macroeconomic and financial variables. We go beyond forecasting stock market volatility (by large the focus in previous studies) and additionally investigate...
Persistent link: https://www.econbiz.de/10008534434
We address the issue of modelling and forecasting macroeconomic variables using medium and large datasets, by adopting VARMA models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (IOLS) estimator. We establish the...
Persistent link: https://www.econbiz.de/10010940885
We explore intraday transaction records from NASDAQ OMX Commodities Europe from January 2006 to October 2013. We analyze empirical results for a selection of existing realized measures of volatility and incorporate them in a Realized GARCH framework for the joint modeling of returns and realized...
Persistent link: https://www.econbiz.de/10010945126
The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...
Persistent link: https://www.econbiz.de/10010851192
We examine US housing price forecastability using a common factor approach based on a large panel of 122 economic time series. We find that a simple three-factor model generates an explanatory power of about 50% in one-quarter ahead in-sample forecasting regressions. The predictive power of the...
Persistent link: https://www.econbiz.de/10010851257