Showing 1 - 10 of 13
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013135866
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013137219
Persistent link: https://www.econbiz.de/10008989139
Persistent link: https://www.econbiz.de/10015145627
Persistent link: https://www.econbiz.de/10011920495
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013362020
Persistent link: https://www.econbiz.de/10012619418
Persistent link: https://www.econbiz.de/10012145042
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013290620
We study factor models augmented by observed covariates that have explanatory powers on the unknown factors. In financial factor models, the unknown factors can be reasonably well explained by a few observable proxies, such as the Fama-French factors. In diffusion index forecasts, identified...
Persistent link: https://www.econbiz.de/10014128414