Showing 1 - 10 of 68
Persistent link: https://www.econbiz.de/10001318059
Predicting default probabilities is at the core of credit risk management and is becoming more and more important for banks in order to measure their client's degree of risk, and for firms to operate successfully. The SVM with evolutionary feature selection is applied to the CreditReform...
Persistent link: https://www.econbiz.de/10012966306
Predicting default probabilities is at the core of credit risk management and is becoming more and more important for banks in order to measure their client's degree of risk, and for firms to operate successfully. The SVM with evolutionary feature selection is applied to the CreditReform...
Persistent link: https://www.econbiz.de/10009526609
Persistent link: https://www.econbiz.de/10003841978
Persistent link: https://www.econbiz.de/10001470768
Persistent link: https://www.econbiz.de/10003022951
Persistent link: https://www.econbiz.de/10003036386
The purpose of this work is to introduce one of the most promising among recently developed statistical techniques – the support vector machine (SVM) – to corporate bankruptcy analysis. An SVM is implemented for analysing such predictors as financial ratios. A method of adapting it to...
Persistent link: https://www.econbiz.de/10012966212
Recently, Diebold and Li (2003) obtained good forecasting results for yield curves in a reparametrized Nelson-Siegel framework. We analyze similar modeling approaches for price curves of variance swaps that serve nowadays as hedging instruments for options on realized variance.We consider the...
Persistent link: https://www.econbiz.de/10012966237
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10012966238