Showing 1 - 10 of 875
This document provides an overview of the StMAR Toolbox, a MATLAB toolbox specifically designed for simulation, estimation, diagnostic, and forecasting of the Student's t mixture autoregressive (StMAR) model proposed by Meitz, Preve & Saikkonen (2018). The StMAR model is a new type of mixture...
Persistent link: https://www.econbiz.de/10012912421
We provide a hands-on introduction to optimized textual sentiment indexation using the R package sentometrics. Textual sentiment analysis is increasingly used to unlock the potential information value of textual data. The sentometrics package implements an intuitive framework to efficiently...
Persistent link: https://www.econbiz.de/10012853491
Predictive power has always been the main research focus of learning algorithms with the goal of minimizing the test error for supervised classification and regression problems. While the general approach for these algorithms is to consider all possible attributes in a dataset to best predict...
Persistent link: https://www.econbiz.de/10012270791
Risk neutral densities (RND) can be used to forecast the price of the underlying basis for the option, or it may be used to price other derivates based on the same sequence. The method adopted in this paper to calculate the RND is to firts estimate daily the diffusion process of the underlying...
Persistent link: https://www.econbiz.de/10001656178
We estimate the process underlying the pricing of American options by using higher-order lattices combined with a multigrid method. This paper also tests whether the risk-neutral densities given from American options provide a good forecasting tool. We use a nonparametric test of the densities...
Persistent link: https://www.econbiz.de/10014223068
This paper presents a method and computational technology for forecasting ambulance trips. We used statistical information about the number of the trips in 2009-2013, the meteorological archive, and the corresponding archive of the meteorological forecasts for the same period. We take into...
Persistent link: https://www.econbiz.de/10013025379
Several approaches for subset recovery and improved forecasting accuracy have been proposed and studied. One way is to apply a regularization strategy and solve the model selection task as a continuous optimization problem. One of the most popular approaches in this research field is given by...
Persistent link: https://www.econbiz.de/10013099334
This study sheds new light on the question of whether or not sentiment surveys, and the expectations derived from them, are relevant to forecasting economic growth and stock returns, and whether they contain information that is orthogonal to macroeconomic and financial data. I examine 16...
Persistent link: https://www.econbiz.de/10013110732
This paper presents how scenario analysis techniques can be used for building financial models that are able to capture the dynamics of the underlying asset prices both in benign periods and in times of stress. The paper presents case studies for building pricing models for equity and FX...
Persistent link: https://www.econbiz.de/10013111898
This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation....
Persistent link: https://www.econbiz.de/10013126942