Showing 1 - 10 of 13,471
Persistent link: https://www.econbiz.de/10011621857
We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor's 500...
Persistent link: https://www.econbiz.de/10010478989
Forecasting-volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer of many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011730304
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011674479
forecasting technique with respect to various volatility estimators. The methodology of volatility estimation included Close …
Persistent link: https://www.econbiz.de/10012870348
forecasting technique with respect to various volatility estimators. The methodology of volatility estimation includes Close …
Persistent link: https://www.econbiz.de/10012860158
This paper proposes novel approaches to the modeling of attenuation bias effects in volatility forecasting. Our strategy relies on suitable generalizations of the Realized GARCH model by Hansen et al. (2012) where the impact of lagged realized measures on the current conditional variance is...
Persistent link: https://www.econbiz.de/10012839665
asymptotic normality for general MSMD specifications. We show that the Whittle estimation is a computationally simple and fast …
Persistent link: https://www.econbiz.de/10010499581
The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential matching procedure which adopts as auxiliary model a time-varying generalization of the HAR model...
Persistent link: https://www.econbiz.de/10010402299
We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time-varying with an...
Persistent link: https://www.econbiz.de/10012951597