Showing 1 - 10 of 58
Persistent link: https://www.econbiz.de/10003778985
Empirical risk minimization is a standard principle for choosing algorithms in learning theory. In this paper we study the properties of empirical risk minimization for time series. The analysis is carried out in a general framework that covers different types of forecasting applications...
Persistent link: https://www.econbiz.de/10013216191
Persistent link: https://www.econbiz.de/10009422364
Persistent link: https://www.econbiz.de/10011931111
We present a volatility forecasting comparative study within the ARCH class of models. Our goal is to identify successful predictive models over multiple horizons and to investigate how predictive ability is influenced by choices for estimation window length, innovation distribution, and...
Persistent link: https://www.econbiz.de/10013095515
We propose a new method for multivariate forecasting which combines Dynamic Factor and multivariate GARCH models. The information contained in large datasets is captured by few dynamic common factors, which we assume being conditionally heteroskedastic. After presenting the model, we propose a...
Persistent link: https://www.econbiz.de/10013154951
Persistent link: https://www.econbiz.de/10014391458
We propose a new method for multivariate forecasting which combines Dynamic Factor and multivariate GARCH models. The information contained in large datasets is captured by few dynamic common factors, which we assume being conditionally heteroskedastic. After presenting the model, we propose a...
Persistent link: https://www.econbiz.de/10003969239
Persistent link: https://www.econbiz.de/10011289224
We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns....
Persistent link: https://www.econbiz.de/10003321460