Showing 1 - 10 of 1,585
This paper exploits a recent and granular data set for 1,500 German LSIs to conduct a residential mortgage stress testing exercise. To account for model uncertainty when modeling PD dynamics we use a benchmark-constrained Bayesian model averaging approach that combines standard BMA with a...
Persistent link: https://www.econbiz.de/10011764865
We extend the standard approach to Bayesian forecast combination by forming the weights for the model averaged forecast from the predictive likelihood rather than the standard marginal likelihood. The use of predictive measures of fit offers greater protection against in-sample overfitting and...
Persistent link: https://www.econbiz.de/10011584029
We compare sparse and dense representations of predictive models in macroeconomics, microeconomics and ftnance. To deal with a large number of possible predictors, we specify a prior that allows for both variable selection and shrinkage. The posterior distribution does not typically concentrate...
Persistent link: https://www.econbiz.de/10012506019
Electricity demand is modeled as a time-varying parameters (TVP) vector autoegression with or without imposing cointegration. The paper applies Bayesian strategies where all or a part of the parameters are allowed to vary, and compares their forecasts performances with alternative time series...
Persistent link: https://www.econbiz.de/10014193091
In this paper, we propose a Bayesian estimation and prediction procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, which gives posterior predictive densities as a byproduct. We show that the...
Persistent link: https://www.econbiz.de/10014202739
This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle with methods and diagnostics used in traditional small-scale models. First, available information from a large dataset...
Persistent link: https://www.econbiz.de/10014215970
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10014221496
We use data from the London Metal Exchange (LME) to forecast monthly copper returns using the recently proposed dynamic model averaging and selection (DMA/DMS) methodology which incorporates time varying parameters as well as time varying model averaging and selection into a unifying framework....
Persistent link: https://www.econbiz.de/10012972876
Machine learning methods are becoming increasingly popular in economics, due to the increased availability of large datasets. In this paper I evaluate a recently proposed algorithm called Generalized Approximate Message Passing (GAMP), which has been popular in signal processing and compressive...
Persistent link: https://www.econbiz.de/10012955264
In this paper, we provide evidence that fat tails and stochastic volatility can be important in improving in-sample fit and out-of-sample forecasting performance. Specifically, we construct a VAR model where the orthogonalised shocks feature Student's t distribution and time-varying variance. We...
Persistent link: https://www.econbiz.de/10013021982