Showing 1 - 10 of 56
Persistent link: https://www.econbiz.de/10011956868
Persistent link: https://www.econbiz.de/10001519358
Persistent link: https://www.econbiz.de/10001780684
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10014158444
This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights...
Persistent link: https://www.econbiz.de/10014158534
A Bayesian semi-parametric dynamic model combination is proposed in order to deal with a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing combination weight dependence between models as well as over time. It introduces an...
Persistent link: https://www.econbiz.de/10012971374
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential...
Persistent link: https://www.econbiz.de/10012889464
A Bayesian dynamic compositional model is introduced that can deal with combining a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing for combination weight dependence across models and time. A compositional model with...
Persistent link: https://www.econbiz.de/10013241513
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013114226
We summarize the general combination approach by Billio et al. [2010]. In the combination model the weights follow logistic auto-regressive processes, change over time and their dynamics are possible driven by the past forecasting performances of the predictive densities. For illustrative...
Persistent link: https://www.econbiz.de/10013114729