Showing 1 - 10 of 77
Persistent link: https://www.econbiz.de/10009231331
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10009125559
In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification...
Persistent link: https://www.econbiz.de/10012966307
Persistent link: https://www.econbiz.de/10001470768
Persistent link: https://www.econbiz.de/10001318059
Persistent link: https://www.econbiz.de/10003022951
Persistent link: https://www.econbiz.de/10003036386
The purpose of this work is to introduce one of the most promising among recently developed statistical techniques – the support vector machine (SVM) – to corporate bankruptcy analysis. An SVM is implemented for analysing such predictors as financial ratios. A method of adapting it to...
Persistent link: https://www.econbiz.de/10012966212
Recently, Diebold and Li (2003) obtained good forecasting results for yield curves in a reparametrized Nelson-Siegel framework. We analyze similar modeling approaches for price curves of variance swaps that serve nowadays as hedging instruments for options on realized variance.We consider the...
Persistent link: https://www.econbiz.de/10012966237
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10012966238