Showing 1 - 10 of 12
Persistent link: https://www.econbiz.de/10011920495
Persistent link: https://www.econbiz.de/10012804117
Persistent link: https://www.econbiz.de/10015145627
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013362020
Persistent link: https://www.econbiz.de/10012619418
Persistent link: https://www.econbiz.de/10012145042
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013290620
We study factor models augmented by observed covariates that have explanatory powers on the unknown factors. In financial factor models, the unknown factors can be reasonably well explained by a few observable proxies, such as the Fama-French factors. In diffusion index forecasts, identified...
Persistent link: https://www.econbiz.de/10014128414
We consider forecasting a single time series using high-dimensional predictors in the presence of a possible nonlinear forecast function. The sufficient forecasting (Fan et al., 2016) used sliced inverse regression to estimate lower-dimensional sufficient indices for non-parametric forecasting...
Persistent link: https://www.econbiz.de/10012957389
Various parametric models have been developed to predict large volatility matrices, based on the approximate factor model structure. They mainly focus on the dynamics of the factor volatility with some finite high-order moment assumptions. However, the empirical studies have shown that the...
Persistent link: https://www.econbiz.de/10013211439