Showing 1 - 10 of 19,403
We apply machine-learning techniques to predict drug approvals using drug-development and clinical-trial data from 2003 to 2015 involving several thousand drug-indication pairs with over 140 features across 15 disease groups. To deal with missing data, we use imputation methods that allow us to...
Persistent link: https://www.econbiz.de/10012901829
We propose a generic workflow for the use of machine learning models to inform decision making and to communicate modelling results with stakeholders. It involves three steps: (1) a comparative model evaluation, (2) a feature importance analysis and (3) statistical inference based on Shapley...
Persistent link: https://www.econbiz.de/10014082579
Forecasting economic activity during an invasion is a nontrivial exercise. The lack of timely statistical data and the expected nonlinear effect of military action challenge the use of established nowcasting and shortterm forecasting methodologies. In a recent study (Constantinescu (2023b)), I...
Persistent link: https://www.econbiz.de/10014368432
This paper identiftes U.S. monetary and ftscal dominance regimes using machine learning techniques. The algorithms are trained and verifted by employing simulated data from Markov-switching DSGE models, before they classify regimes from 1968-2017 using actual U.S. data. All machine learning...
Persistent link: https://www.econbiz.de/10012520524
Nonlinear classification models can predict future earnings surprises with a high accuracy by using pricing and earnings input data. Surprises of 15% or more can be predicted with 71% accuracy. These predictions can be used to form profitable trading strategies. Additional variables have been...
Persistent link: https://www.econbiz.de/10012848594
In this tutorial we introduce recurrent neural networks (RNNs), and we describe the two most popular RNN architectures. These are the long short-term memory (LSTM) network and gated recurrent unit (GRU) network. Their common field of application is time series modeling, and we demonstrate their...
Persistent link: https://www.econbiz.de/10012864302
This paper identifies U.S. monetary and fiscal dominance regimes using machine learning techniques. The algorithms are trained and verified by employing simulated data from Markov-switching DSGE models, before they classify regimes from 1968-2017 using actual U.S. data. All machine learning...
Persistent link: https://www.econbiz.de/10012292233
Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy...
Persistent link: https://www.econbiz.de/10014094821
This paper develops an early warning system for predicting distress for large European banks. Using a novel definition of distress derived from banks' headroom above regulatory requirements, we investigate the performance of three machine learning techniques against the traditional logistic...
Persistent link: https://www.econbiz.de/10015185208
This paper describes recent work to strengthen nowcasting capacity at the IMF’s European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning...
Persistent link: https://www.econbiz.de/10013292901