Showing 1 - 10 of 20,900
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014322889
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014349505
Portfolio optimization focuses on risk and return prediction, yet implementation costs critically matter. Predicting trading costs is challenging because costs depend on trade size and trader identity, thus impeding a generic solution. We focus on a component of trading costs that applies...
Persistent link: https://www.econbiz.de/10015094879
Machine learning (ML) is a novel method that has applications in asset pricing and that fits well within the problem of measurement in economics. Unlike econometrics, ML models are not designed for parameter estimation and inference, but similar to econometrics, they address, and may be better...
Persistent link: https://www.econbiz.de/10013475217
We establish the out-of-sample predictability of monthly exchange rate changes via machine learning techniques based on 70 predictors capturing country characteristics, global variables, and their interactions. To guard against overfitting, we use the elastic net to estimate a high-dimensional...
Persistent link: https://www.econbiz.de/10012847704
Statistical-based predictions with extreme value theory improve the performance of the risk model not by choosing the …
Persistent link: https://www.econbiz.de/10015196332
Several academics have studied the ability of hybrid models mixing univariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and neural networks to deliver better volatility predictions than purely econometric models. Despite presenting very promising results, the...
Persistent link: https://www.econbiz.de/10013211314
Persistent link: https://www.econbiz.de/10014355380
We examine in this paper the training and test set performance of several equity factor models with a dataset of 20 years of data, 1,200 stocks and 100 factors. First, we examine several models to forecast expected returns, which can be used as baselines for more complex models: linear...
Persistent link: https://www.econbiz.de/10014255242
We introduce a flexible utility-based empirical approach to directly determine asset allocation decisions between risky and risk-free assets. This is in contrast to the commonly used two-step approach where least squares optimal statistical equity premium predictions are first constructed to...
Persistent link: https://www.econbiz.de/10013249064