Showing 1 - 10 of 31
Persistent link: https://www.econbiz.de/10015196772
We propose a new asset-pricing framework in which all securities' signals are used to predict each individual return. While the literature focuses on each security's own- signal predictability, assuming an equal strength across securities, our framework is flexible and includes...
Persistent link: https://www.econbiz.de/10012271188
The extant literature predicts market returns with "simple" models that use only a few parameters. Contrary to conventional wisdom, we theoretically prove that simple models severely understate return predictability compared to "complex" models in which the number of parameters exceeds the...
Persistent link: https://www.econbiz.de/10013334435
Persistent link: https://www.econbiz.de/10013177471
We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio and average pricing errors—is improving in model parameterization (or “complexity”). Our results predict that the best...
Persistent link: https://www.econbiz.de/10014254198
Persistent link: https://www.econbiz.de/10014486426
We introduce a new class of momentum strategies, the risk-adjusted time series momentum (RAMOM) strategies, which are based on averages of past futures returns, normalized by their volatility. We test these strategies on a universe of 64 liquid futures contracts and show that RAMOM strategies...
Persistent link: https://www.econbiz.de/10011293745
We survey recent methodological contributions in asset pricing using factor models and machine learning. We organize these results based on their primary objectives: estimating expected returns, factors, risk exposures, risk premia, and the stochastic discount factor as well as model comparison...
Persistent link: https://www.econbiz.de/10014242407
Persistent link: https://www.econbiz.de/10015198713
Persistent link: https://www.econbiz.de/10009422364