Showing 1 - 10 of 25
Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the...
Persistent link: https://www.econbiz.de/10010317385
Alternative strategies for predicting stock market volatility are examined. In out-of-sample forecasting experiments implied-volatility information, derived from contemporaneously observed option prices or history-based volatility predictors, such as GARCH models, are investigated, to determine...
Persistent link: https://www.econbiz.de/10010317419
Financial markets embed expectations of central bank policy into asset prices. This paper compares two approaches that extract a probability density of market beliefs. The first is a simulated moments estimator for option volatilities described in Mizrach (2002); the second is a new approach...
Persistent link: https://www.econbiz.de/10010263203
Financial markets embed expectations of central bank policy into asset prices. This paper compares two approaches that extract a probability density of market beliefs. The first is a simulatedmoments estimator for option volatilities described in Mizrach (2002); the second is a new approach...
Persistent link: https://www.econbiz.de/10010298266
While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many...
Persistent link: https://www.econbiz.de/10010298301
Using unobservable conditional variance as measure, latent-variable approaches, such as GARCH and stochastic-volatility models, have traditionally been dominating the empirical finance literature. In recent years, with the availability of high-frequency financial market data modeling realized...
Persistent link: https://www.econbiz.de/10010298315
A resampling method based on the bootstrap and a bias-correction step is developed for improving the Value-at-Risk (VaR) forecasting ability of the normal-GARCH model. Compared to the use of more sophisticated GARCH models, the new method is fast, easy to implement, numerically reliable, and,...
Persistent link: https://www.econbiz.de/10010298337
While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many...
Persistent link: https://www.econbiz.de/10004979970
Using unobservable conditional variance as measure, latentvariable approaches, such as GARCH and stochasticvolatility models, have traditionally been dominating the empirical finance literature. In recent years, with the availability of highfrequency financial market data modeling realized...
Persistent link: https://www.econbiz.de/10010986437
Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the...
Persistent link: https://www.econbiz.de/10010958539