Showing 1 - 10 of 27
In this paper we compare the incremental information content of lagged implied volatility to GARCH models of conditional volatility for a collection of agricultural commodities traded on the New York Board of Trade. We also assess the relevance of the additional information provided by the...
Persistent link: https://www.econbiz.de/10005043100
In this paper we feature state-of-the-art econometric methodology of temporal aggregation for univariate linear time series, namely ARIMA-GARCH models. We present a unified overview of temporal aggregation techniques for this broad class of processes and we explain in detail, although...
Persistent link: https://www.econbiz.de/10005065424
We present a unified and up-to-date overview of temporal aggregation techniques for univariate and multivariate time series models explaining in detail how these techniques are employed. Some empirical applications illustrate the main issues.
Persistent link: https://www.econbiz.de/10005609326
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10010324702
We develop a Markov-switching GARCH model (MS-GARCH) wherein the conditional mean and variance switch in time from one GARCH process to another. The switching is governed by a hidden Markov chain. We provide sufficient conditions for geometric ergodicity and existence of moments of the process....
Persistent link: https://www.econbiz.de/10005489846
We present an estimation and forecasting method, based on a differential evolution MCMC method, for inference in GARCH models subjected to an unknown number of structural breaks at unknown dates. We treat break dates as parameters and determine the number of breaks by computing the marginal...
Persistent link: https://www.econbiz.de/10011116269
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, a location-scale transformation and a transformation to polar coordinates are used....
Persistent link: https://www.econbiz.de/10010731811
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10011052313
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, location-scale transformation and a transformation to polar coordinates are used....
Persistent link: https://www.econbiz.de/10005042753
We develop univariate regime-switching GARCH (RS-GARCH) models wherein the conditional variance switches in time from one GARCH process to another. The switching is governed by a time-varying probability, specified as a function of past information. We provide sufficient conditions for...
Persistent link: https://www.econbiz.de/10005043540