Showing 1 - 3 of 3
In this paper, we consider a scale adjusted-type distance-based classifier for high-dimensional data. We first give such a classifier that can ensure high accuracy in misclassification rates for two-class classification. We show that the classifier is not only consistent but also asymptotically...
Persistent link: https://www.econbiz.de/10010950414
In this article, we propose a new estimation methodology to deal with PCA for high-dimension, low-sample-size (HDLSS) data. We first show that HDLSS datasets have different geometric representations depending on whether a ρ-mixing-type dependency appears in variables or not. When the...
Persistent link: https://www.econbiz.de/10011041986
In this paper, we propose a general spiked model called the power spiked model in high-dimensional settings. We derive relations among the data dimension, the sample size and the high-dimensional noise structure. We first consider asymptotic properties of the conventional estimator of...
Persistent link: https://www.econbiz.de/10010702809