Showing 1 - 10 of 15
We deal with discretization schemes for the simulation of the Heston stochastic volatility model. These simulation methods yield a popular and flexible pricing alternative for pricing and managing a book of exotic derivatives which cannot be valued using closed-form expressions. For the Heston...
Persistent link: https://www.econbiz.de/10008487381
The characteristic functions of many affine jump-diffusion models, such as Heston’s stochastic volatility model and all of its extensions, involve multivalued functions such as the complex logarithm. If we restrict the logarithm to its principal branch, as is done in most software packages,...
Persistent link: https://www.econbiz.de/10010325214
When using an Euler discretisation to simulate a mean-reverting square root process, one runs into the problem that while the process itself is guaranteed to be nonnegative, the discretisation is not. Although an exact and efficient simulation algorithm exists for this process, at present this...
Persistent link: https://www.econbiz.de/10010325371
At the time of writing this article, Fourier inversion is the computational method of choice for a fast and accurate calculation of plain vanilla option prices in models with an analytically available characteristic function. Shifting the contour of integration along the complex plane allows for...
Persistent link: https://www.econbiz.de/10010325539
The characteristic functions of many affine jump-diffusion models, such as Heston’s stochastic volatility model and all of its extensions, involve multivalued functions such as the complex logarithm. If we restrict the logarithm to its principal branch, as is done in most software packages,...
Persistent link: https://www.econbiz.de/10011257149
When using an Euler discretisation to simulate a mean-reverting square root process, one runs into the problem that while the process itself is guaranteed to be nonnegative, the discretisation is not. Although an exact and efficient simulation algorithm exists for this process, at present this...
Persistent link: https://www.econbiz.de/10005136945
The characteristic functions of many affine jump-diffusion models, such as Heston’s stochastic volatility model and all of its extensions, involve multivalued functions such as the complex logarithm. If we restrict the logarithm to its principal branch, as is done in most software packages,...
Persistent link: https://www.econbiz.de/10005137076
At the time of writing this article, Fourier inversion is the computational method of choice for a fast and accurate calculation of plain vanilla option prices in models with an analytically available characteristic function. Shifting the contour of integration along the complex plane allows for...
Persistent link: https://www.econbiz.de/10005209502
Using an Euler discretization to simulate a mean-reverting CEV process gives rise to the problem that while the process itself is guaranteed to be nonnegative, the discretization is not. Although an exact and efficient simulation algorithm exists for this process, at present this is not the case...
Persistent link: https://www.econbiz.de/10008609637
Guo and Hung (2007) recently studied the complex logarithm present in the characteristic function of Heston's stochastic volatility model. They proposed an algorithm for the evaluation of the characteristic function that is claimed to preserve its continuity. We show their algorithm is correct,...
Persistent link: https://www.econbiz.de/10008675001