Showing 1 - 10 of 43
In this note, we propose the use of sparse methods (e.g. LASSO, Post-LASSO, p LASSO, and Post-p LASSO) to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments in the canonical Gaussian case. The methods apply even when...
Persistent link: https://www.econbiz.de/10014178853
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010227452
We consider estimation of policy relevant treatment effects in a data-rich environ ment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endogenous...
Persistent link: https://www.econbiz.de/10010200037
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934
Persistent link: https://www.econbiz.de/10009689519
In this paper, we consider estimation of general modern moment-condition problems in econometrics in a data-rich environment where there may be many more control variables available than there are observations. The framework we consider allows for a continuum of target parameters and for...
Persistent link: https://www.econbiz.de/10010388633
Persistent link: https://www.econbiz.de/10009271127
Persistent link: https://www.econbiz.de/10009271225
We consider estimation and inference in panel data models with additive unobserved individual specific heterogeneity in a high dimensional setting. The setting allows the number of time varying regressors to be larger than the sample size. To make informative estimation and inference feasible,...
Persistent link: https://www.econbiz.de/10010459263
This chapter presents key concepts and theoretical results for analyzing estimation and inference in high-dimensional models. High-dimensional models are characterized by having a number of unknown parameters that is not vanishingly small relative to the sample size. We first present results in...
Persistent link: https://www.econbiz.de/10011865610