Showing 1 - 10 of 2,766
In asset pricing, most studies focus on finding new factors such as macroeconomic factors or firm characteristics to explain risk premium. Investigating whether these factors are useful in forecasting stock returns remains active research in the field of finance and computer science. This paper...
Persistent link: https://www.econbiz.de/10014235825
The study proposes and a family of regime switching GARCH neural network models to model volatility. The proposed MS-ARMA-GARCH-NN models allow MS type regime switching in both the conditional mean and conditional variance for time series and further augmented with artificial neural networks to...
Persistent link: https://www.econbiz.de/10013090501
In this work we use Recurrent Neural Networks and Multilayer Perceptrons, to predict NYSE, NASDAQ and AMEX stock prices from historical data. We experiment with different architectures and compare data normalization techniques. Then, we leverage those findings to question the efficient-market...
Persistent link: https://www.econbiz.de/10012834485
This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the...
Persistent link: https://www.econbiz.de/10014514075
This study finds that mispricing is a vital source of the cross-sectional return predictability in equity returns. Using a novel Artificial Neural Network (ANN) regression model, I obtain firm-level predictions conditional on 54 firm-level characteristics and an encoded representation of the...
Persistent link: https://www.econbiz.de/10014255174
Persistent link: https://www.econbiz.de/10014251571
The paper examines the pattern of stock returns of mid cap Indian companies over a period of time and proposes frameworks for predictive modelling. Ten features are identified as predictors of stock returns. Subsequently two Machine Learning models, Random Forest and Dynamic Neural Fuzzy...
Persistent link: https://www.econbiz.de/10013002339
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267
A single hidden layer neural network can be trained to predict whether a stock will be in the top, middle, or bottom third of sample stocks based on its return over the next month based on return, trading volume, and volatility measures available at the end of this month. In my preliminary work...
Persistent link: https://www.econbiz.de/10012924817
Predicting stock returns has been a never ending endeavour of both, practitioners and academics. Accurate forecasts are crucial for investment decisions and performances as well as for analysing market microstructures. This paper offers an innovative approach towards forecasting based on Neural...
Persistent link: https://www.econbiz.de/10014236213