Showing 1 - 10 of 1,486
Predictions of asset returns and volatilities are heavily discussed and analyzed in the finance research literature. In this paper, we compare linear and nonlinear predictions for stock- and bond index returns and their covariance matrix. We show in-sample and out-of-sample prediction accuracy...
Persistent link: https://www.econbiz.de/10013116144
The paper examines the pattern of stock returns of mid cap Indian companies over a period of time and proposes frameworks for predictive modelling. Ten features are identified as predictors of stock returns. Subsequently two Machine Learning models, Random Forest and Dynamic Neural Fuzzy...
Persistent link: https://www.econbiz.de/10013002339
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267
In asset pricing, most studies focus on finding new factors such as macroeconomic factors or firm characteristics to explain risk premium. Investigating whether these factors are useful in forecasting stock returns remains active research in the field of finance and computer science. This paper...
Persistent link: https://www.econbiz.de/10014235825
Predicting stock returns has been a never ending endeavour of both, practitioners and academics. Accurate forecasts are crucial for investment decisions and performances as well as for analysing market microstructures. This paper offers an innovative approach towards forecasting based on Neural...
Persistent link: https://www.econbiz.de/10014236213
In this work we use Recurrent Neural Networks and Multilayer Perceptrons, to predict NYSE, NASDAQ and AMEX stock prices from historical data. We experiment with different architectures and compare data normalization techniques. Then, we leverage those findings to question the efficient-market...
Persistent link: https://www.econbiz.de/10012834485
This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the...
Persistent link: https://www.econbiz.de/10014514075
Motivated by recurrent neural networks, this paper proposes a recurrent support vector regression (SVR) procedure to forecast nonlinear ARMA model based simulated data and real data of financial returns. The forecasting ability of the recurrent SVR based ARMA model is compared with five...
Persistent link: https://www.econbiz.de/10012997751
The study proposes and a family of regime switching GARCH neural network models to model volatility. The proposed MS-ARMA-GARCH-NN models allow MS type regime switching in both the conditional mean and conditional variance for time series and further augmented with artificial neural networks to...
Persistent link: https://www.econbiz.de/10013090501
In the current study we examine the effects of interest rate changes on common stock returns of Greek banking sector. We examine the Generalized Autoregressive Heteroskedasticity (GARCH) process and an Adaptive Neuro-Fuzzy Inference System (ANFIS). The conclusions of our findings are that the...
Persistent link: https://www.econbiz.de/10013129200