Showing 1 - 10 of 48
We revisit the classic semiparametric problem of inference on a low di-mensional parameter Ø0 in the presence of high-dimensional nuisance parameters Û0. We depart from the classical setting by allowing for Û0 to be so high-dimensional that the traditional assumptions, such as Donsker...
Persistent link: https://www.econbiz.de/10011941471
Most modern supervised statistical/machine learning (ML) methods are explicitly designed to solve prediction problems very well. Achieving this goal does not imply that these methods automatically deliver good estimators of causal parameters. Examples of such parameters include individual...
Persistent link: https://www.econbiz.de/10011538313
Persistent link: https://www.econbiz.de/10011701515
Persistent link: https://www.econbiz.de/10011782994
We revisit the classic semiparametric problem of inference on a low di-mensional parameter Ø0 in the presence of high-dimensional nuisance parameters π0. We depart from the classical setting by allowing for π0 to be so high-dimensional that the traditional assumptions, such as Donsker...
Persistent link: https://www.econbiz.de/10011655554
Persistent link: https://www.econbiz.de/10012170969
We revisit the classic semiparametric problem of inference on a low dimensional parameter θ_0 in the presence of high-dimensional nuisance parameters η_0. We depart from the classical setting by allowing for η_0 to be so high-dimensional that the traditional assumptions, such as Donsker...
Persistent link: https://www.econbiz.de/10012455118
Persistent link: https://www.econbiz.de/10012933538
Persistent link: https://www.econbiz.de/10013539426
We present a methodology for estimating the distributional effects of an endogenous treatment that varies at the group level when there are group-level unobservables, a quantile extension of Hausman and Taylor (1981). Standard quantile regression techniques are inconsistent in this setting, even...
Persistent link: https://www.econbiz.de/10013071528