Showing 1 - 10 of 24
Persistent link: https://www.econbiz.de/10001381857
It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optional stochastic control. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale term and an...
Persistent link: https://www.econbiz.de/10011543852
Persistent link: https://www.econbiz.de/10008649933
Persistent link: https://www.econbiz.de/10010256230
It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optional stochastic control. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional martingale term and an...
Persistent link: https://www.econbiz.de/10010324050
Persistent link: https://www.econbiz.de/10001475180
Persistent link: https://www.econbiz.de/10001387121
We review the relations between adjoints of stochastic control problems with the derivative of the value function, and the latter with the value function of a stopping problem. These results are applied to the pricing of contingent claims.
Persistent link: https://www.econbiz.de/10011544985
Multi-dimensional backward stochastic Riccati differential equations (BSRDEs in short) are studied. A closed property for solutions of BSRDEs with respect to their coefficients is stated and is proved for general BSRDEs, which is used to obtain the existence of a global adapted solution to some...
Persistent link: https://www.econbiz.de/10010324034