Showing 1 - 9 of 9
Persistent link: https://www.econbiz.de/10011389730
Persistent link: https://www.econbiz.de/10011895079
In this article, we employ a regression formulation to estimate the high dimensional covariance matrix for a given network structure. Using prior information contained in the network relationships, we model the covariance as a polynomial function of the symmetric adjacency matrix. Accordingly,...
Persistent link: https://www.econbiz.de/10012996513
In multivariate analysis, the covariance matrix associated with a set of variables of interest (namely response variables) commonly contains valuable information about the dataset. When the dimension of response variables is considerably larger than the sample size, it is a non-trivial task to...
Persistent link: https://www.econbiz.de/10013054334
In this paper, we propose two important measures, quantile correlation (QCOR) and quantile partial correlation (QPCOR). We then apply them to quantile autoregressive (QAR) models, and introduce two valuable quantities, the quantile autocorrelation function (QACF) and the quantile partial...
Persistent link: https://www.econbiz.de/10014165231
In a high dimensional linear regression model, we propose a new procedure for testing statistical significance of a subset of regression coefficients. Specifically, we employ the partial covariances between the response variable and the tested covariates to obtain a test statistic. The resulting...
Persistent link: https://www.econbiz.de/10013082410
This article introduces covariance regression analysis for a p-dimensional response vector. The proposed method explores the regression relationship between the p-dimensional covariance matrix and auxiliary information. We study three types of estimators: maximum likelihood, ordinary least...
Persistent link: https://www.econbiz.de/10013010571
There has been considerable attention on estimation of conditional variance function in the literature. We propose here a nonparametric model for conditional covariance matrix. A kernel estimator is developed accordingly, its asymptotic bias and variance are derived, and its asymptotic normality...
Persistent link: https://www.econbiz.de/10012768311
The problem of regression shrinkage and selection for multivariate regression is considered. The goal is to consistently identify those variables relevant for regression. This is done not only for predictors but also for responses. To this end, a novel relationship between multivariate...
Persistent link: https://www.econbiz.de/10013096103