Showing 1 - 10 of 28
In practice, multivariate dependencies of extreme risks are often only assessed in a pairwise way. We propose a novel test to detect when bivariate simplifications produce misleading results. This occurs when a significant portion of the multivariate dependence structure in the tails is of...
Persistent link: https://www.econbiz.de/10010246746
In practice, multivariate dependencies between extreme risks are often only assessed in a pairwise way. We propose a test to detect when tail dependence is truly high{dimensional and bivariate simplifications would produce misleading results. This occurs when a significant portion of the...
Persistent link: https://www.econbiz.de/10010402973
A new model for time-varying spatial dependencies is introduced. It forms an extension to the popular spatial lag model and can be estimated conveniently by maximum likelihood. The spatial dependence parameter is assumed to follow a generalized autoregressive score (GAS) process. The theoretical...
Persistent link: https://www.econbiz.de/10010491085
Persistent link: https://www.econbiz.de/10011705251
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10010391531
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10010281571
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10013118530
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10009349196
We study a general class of semiparametric estimators when the in nite-dimensional nuisance parameters include a conditional expectation function that has been estimated nonparametrically using generated covariates. Such estimators are used frequently to e.g. estimate nonlinear models with...
Persistent link: https://www.econbiz.de/10010402950
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10009517432