Showing 1 - 10 of 11
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10013118530
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10009349196
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10009517432
We study a general class of semiparametric estimators when the infinite-dimensional nuisance parameters include a conditional expectation function that has been estimated nonparametrically using generated covariates. Such estimators are used frequently to e.g. estimate nonlinear models with...
Persistent link: https://www.econbiz.de/10011414707
Persistent link: https://www.econbiz.de/10011661733
In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated...
Persistent link: https://www.econbiz.de/10010281571
In statistical network analysis it is common to observe so called interaction data. Such data is characterized by actors forming the vertices and interacting along edges of the network, where edges are randomly formed and dissolved over the observation horizon. In addition, covariates are...
Persistent link: https://www.econbiz.de/10015177939
We consider time series models in which the conditional mean of the response variable given the past depends on latent covariates. We assume that the covariates can be estimated consistently and use an iterative nonparametric kernel smoothing procedure for estimating the conditional mean...
Persistent link: https://www.econbiz.de/10003747376
In practice, multivariate dependencies of extreme risks are often only assessed in a pairwise way. We propose a novel test to detect when bivariate simplifications produce misleading results. This occurs when a significant portion of the multivariate dependence structure in the tails is of...
Persistent link: https://www.econbiz.de/10010246746
In practice, multivariate dependencies between extreme risks are often only assessed in a pairwise way. We propose a test to detect when tail dependence is truly high{dimensional and bivariate simplifications would produce misleading results. This occurs when a significant portion of the...
Persistent link: https://www.econbiz.de/10010402973