Showing 1 - 10 of 47
Persistent link: https://www.econbiz.de/10011811777
Persistent link: https://www.econbiz.de/10013540653
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012584105
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012030045
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012165715
Persistent link: https://www.econbiz.de/10012878194
Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns and (ii) the covariance matrix of returns. Many proposals to address the first question exist already. This paper addresses the second question. We promote a new nonlinear shrinkage estimator of the...
Persistent link: https://www.econbiz.de/10010243453
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011598583
This paper constructs a new estimator for large covariance matrices by drawing a bridge between the classic Stein (1975) estimator in finite samples and recent progress under large-dimensional asymptotics. The estimator keeps the eigenvectors of the sample covariance matrix and applies shrinkage...
Persistent link: https://www.econbiz.de/10012390074
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012165719