Showing 1 - 4 of 4
We propose a new methodology for structural estimation of dynamic discrete choice models. We combine the Dynamic Programming (DP) solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm that solves the DP problem and estimates the parameters...
Persistent link: https://www.econbiz.de/10011940732
This paper provides a step-by-step guide to estimating discrete choice dynamic programming (DDP) models using the Bayesian Dynamic Programming algorithm developed in Imai, Jain and Ching (2008) (IJC). The IJC method combines the DDP solution algorithm with the Bayesian Markov Chain Monte Carlo...
Persistent link: https://www.econbiz.de/10010290365
We propose a new methodology for structural estimation of dynamic discrete choice models. We combine the Dynamic Programming (DP) solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm that solves the DP problem and estimates the parameters...
Persistent link: https://www.econbiz.de/10005688258
This paper provides a step-by-step guide to estimating discrete choice dynamic programming (DDP) models using the Bayesian Dynamic Programming algorithm developed by Imai Jain and Ching (2008) (IJC). The IJC method combines the DDP solution algorithm with the Bayesian Markov Chain Monte Carlo...
Persistent link: https://www.econbiz.de/10005209120