Showing 1 - 10 of 22
The estimated parameters of output distance functions frequently violate the monotonicity, quasiconvexity and convexity constraints implied by economic theory, leading to estimated elasticities and shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the...
Persistent link: https://www.econbiz.de/10009448063
This paper proposes a new Bayesian multiple change-point model which is based on the hidden Markov approach. The Dirichlet process hidden Markov model does not require the specification of the number of change-points a priori. Hence our model is robust to model specification in contrast to the...
Persistent link: https://www.econbiz.de/10011110612
Heterogeneity in choice models is typically assumed to have a normal distribution in both Bayesian and classical setups. In this paper, we propose a semiparametric Bayesian framework for the analysis of random coefficients discrete choice models that can be applied to both individual as well as...
Persistent link: https://www.econbiz.de/10010816357
In this paper, we introduce the notion of efficiency (consistency) and examine some asymptotic properties of Markov chain Monte Carlo methods. We apply these results to the data augmentation (DA) procedure for independent and identically distributed observations. More precisely, we show that if...
Persistent link: https://www.econbiz.de/10010848647
Heterogeneity in choice models is typically assumed to have a normal distribution in both Bayesian and classical setups. In this paper, we propose a semiparametric Bayesian framework for the analysis of random coefficients discrete choice models that can be applied to both individual as well as...
Persistent link: https://www.econbiz.de/10010914223
Dynamic risk processes, which involve interactions at the hazard and risk levels, have yet to be clearly understood and properly integrated into probabilistic risk assessment. While much attention has been given to this aspect lately, most studies remain limited to a small number of...
Persistent link: https://www.econbiz.de/10010949719
Gibbs samplers derived under different parametrizations of the target density can have radically different rates of convergence. In this article, we specify conditions under which reparametrization leaves the convergence rate of a Gibbs chain unchanged. An example illustrates how these results...
Persistent link: https://www.econbiz.de/10011039965
Let π denote the intractable posterior density that results when the standard default prior is placed on the parameters in a linear regression model with iid Laplace errors. We analyze the Markov chains underlying two different Markov chain Monte Carlo algorithms for exploring π. In...
Persistent link: https://www.econbiz.de/10011041992
Consider the quantile regression model Y=Xβ+σϵ where the components of ϵ are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r∈(0,1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable...
Persistent link: https://www.econbiz.de/10011042040
In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, 'diffuse' priors on model-specific parameters can lead to quite unexpected...
Persistent link: https://www.econbiz.de/10005086774