Showing 1 - 7 of 7
Persistent link: https://www.econbiz.de/10002673492
This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth...
Persistent link: https://www.econbiz.de/10014027875
Bayesian inference for DSGE models is typically carried out by single block random walk Metropolis, involving very high computing costs. This paper combines two features, adaptive independent Metropolis-Hastings and parallelisation, to achieve large computational gains in DSGE model estimation....
Persistent link: https://www.econbiz.de/10003932659
Persistent link: https://www.econbiz.de/10009691169
Persistent link: https://www.econbiz.de/10003425516
We model a regression density nonparametrically so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important...
Persistent link: https://www.econbiz.de/10003543998
Andrieu et al. (2010) prove that Markov chain Monte Carlo samplers still converge to the correct posterior distribution of the model parameters when the likelihood is estimated by the particle filter (with a finite number of particles) is used instead of the likelihood. A critical issue for...
Persistent link: https://www.econbiz.de/10012870345