Showing 1 - 10 of 10
We describe the package MSGARCH, which implements Markov-switching GARCH models in R with efficient C++ object-oriented programming. Markov-switching GARCH models have become popular methods to account for regime changes in the conditional variance dynamics of time series. The package MSGARCH...
Persistent link: https://www.econbiz.de/10012902834
Persistent link: https://www.econbiz.de/10011898020
We perform a large-scale empirical study to compare the forecasting performance of single-regime and Markov-switching GARCH (MSGARCH) models from a risk management perspective. We find that, for daily, weekly, and ten-day equity log-returns, MSGARCH models yield more accurate Value-at-Risk,...
Persistent link: https://www.econbiz.de/10012902294
Persistent link: https://www.econbiz.de/10012031094
Persistent link: https://www.econbiz.de/10003841976
Persistent link: https://www.econbiz.de/10003813789
This discussion paper led to a publication in 'Computational Statistics & Data Analysis' 56(11), pp. 3398-1414.Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior...
Persistent link: https://www.econbiz.de/10011377602
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...
Persistent link: https://www.econbiz.de/10011380176
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10011380465
Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior distributions. We focus on the situation where one makes use of importance sampling or the independence chain...
Persistent link: https://www.econbiz.de/10012749869