Showing 1 - 10 of 23
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10011302625
Bayesian forecasting is a natural product of a Bayesian approach to inference. The Bayesian approach in general requires explicit formulation of a model, and conditioning on known quantities, in order to draw inferences about unknown ones. In Bayesian forecasting, one simply takes a subset of...
Persistent link: https://www.econbiz.de/10014023705
previous work along these lines. The methods we develop are simple to implement and simulation efficient. Importantly, unlike …
Persistent link: https://www.econbiz.de/10005730357
Persistent link: https://www.econbiz.de/10005616494
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10010324702
sophisticated neural network simulation techniques is explored. In all examples considered in this paper – a bimodal distribution of …
Persistent link: https://www.econbiz.de/10010325728
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, a location-scale transformation and a transformation to polar coordinates are used....
Persistent link: https://www.econbiz.de/10005137171
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, location-scale transformation and a transformation to polar coordinates are used....
Persistent link: https://www.econbiz.de/10005042753
is scalable in terms of series and factors and simulation-efficient. Methods for estimating the log-likelihood function …
Persistent link: https://www.econbiz.de/10009441545
We provide a generic Monte Carlo method to find the alternative of maximum expected utility in a decision analysis. We define an artificial distribution on the product space of alternatives and states, and show that the optimal alternative is the mode of the implied marginal distribution on the...
Persistent link: https://www.econbiz.de/10009213968