Showing 1 - 10 of 28,359
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10014185812
This paper studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for testing whether a specific input combination...
Persistent link: https://www.econbiz.de/10014049484
Robust optimization (RO) is a young and active research field that has been mainly developed in the last 15 years. RO techniques are very useful for practice and not difficult to understand for practitioners. It is therefore remarkable that real-life applications of RO are still lagging behind;...
Persistent link: https://www.econbiz.de/10013034645
This paper derives a novel procedure for testing the Karush-Kuhn-Tucker (KKT) first-order optimality conditions in models with multiple random responses.Such models arise in simulation-based optimization with multivariate outputs. This paper focuses on expensive simulations, which have small...
Persistent link: https://www.econbiz.de/10014062609
We study a system with heterogeneous parallel servers, each with an infinite waiting room. Upon arrival, a job is routed to the queue of one of the servers. The objective is to find the routing policy that best utilizes the available state information to minimize the expected stationary queue...
Persistent link: https://www.econbiz.de/10013309752
Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often...
Persistent link: https://www.econbiz.de/10014150072
nonlinearities and high levels of heterogeneity. The theory is supported by extensive Monte Carlo experiments. …
Persistent link: https://www.econbiz.de/10014634825
Distribution-free bootstrapping of the replicated responses of a given discreteevent simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with...
Persistent link: https://www.econbiz.de/10014166285
In this paper we investigate global optimization for black-box simulations using metamodels to guide this optimization. As a novel metamodel we introduce intrinsic Kriging, for either deterministic or random simulation. For deterministic simulation we study the famous 'e fficient global...
Persistent link: https://www.econbiz.de/10014141513
This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression metamodels, or Kriging (Gaussian processes). The metamodel type guides the design of the experiment; this design fixes the input...
Persistent link: https://www.econbiz.de/10012956205