Showing 1 - 10 of 68
Persistent link: https://www.econbiz.de/10003706020
State space models with nonstationary processes and fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time series models with diffuse initial conditions. In this paper we consider...
Persistent link: https://www.econbiz.de/10011374403
State space models with nonstationary processes and fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time series models with diffuse initial conditions. In this paper we consider...
Persistent link: https://www.econbiz.de/10014218888
Persistent link: https://www.econbiz.de/10000953379
Persistent link: https://www.econbiz.de/10002651712
Persistent link: https://www.econbiz.de/10002564535
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10014220784
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10014221102
Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used...
Persistent link: https://www.econbiz.de/10012981759
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10013115029