Showing 1 - 10 of 18
Persistent link: https://www.econbiz.de/10001589531
Persistent link: https://www.econbiz.de/10001782293
Persistent link: https://www.econbiz.de/10001627138
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10014058202
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
We propose a generic algorithm for numerically accurate likelihood evaluation of a broad class of spatial models characterized by a high-dimensional latent Gaussian process and non-Gaussian response variables. The class of models under consideration includes specifications for discrete choices,...
Persistent link: https://www.econbiz.de/10013036112
This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infi nite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient...
Persistent link: https://www.econbiz.de/10013118069
The joint posterior of latent variables and parameters in Bayesian hierarchical models often has a strong nonlinear dependence structure, thus making it a challenging target for standard Markov-chain Monte-Carlo methods. Pseudo-marginal methods aim at effectively exploring such target...
Persistent link: https://www.econbiz.de/10012896517
This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infinite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient...
Persistent link: https://www.econbiz.de/10009382978