Showing 1 - 10 of 18
Persistent link: https://www.econbiz.de/10001589531
Persistent link: https://www.econbiz.de/10001782293
Persistent link: https://www.econbiz.de/10001627138
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10014058202
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infi nite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient...
Persistent link: https://www.econbiz.de/10013118069
This paper provides high-dimensional and flexible importance sampling procedures for the likelihood evaluation of dynamic latent variable models involving finite or infinite mixtures leading to possibly heavy tailed and/or multi-modal target densities. Our approach is based upon the efficient...
Persistent link: https://www.econbiz.de/10009382978
In this paper we consider ML estimation for a broad class of parameter-driven models for discrete dependent variables with spatial correlation. Under this class of models, which includes spatial discrete choice models, spatial Tobit models and spatial count data models, the dependent variable is...
Persistent link: https://www.econbiz.de/10009685715
Persistent link: https://www.econbiz.de/10003355771