Showing 1 - 10 of 1,061
reserved for prediction. …
Persistent link: https://www.econbiz.de/10011872320
Persistent link: https://www.econbiz.de/10012267289
An autoregressive fixed effects panel data equation in error-ridden endogenous and exogenous variables, with finite memory of disturbances, latent regressors and measurement errors is considered. Finite sample properties of GMM estimators are explored by Monte Carlo (MC) simulations. Two kinds...
Persistent link: https://www.econbiz.de/10010330209
The Generalized Method of Moments (GMM) is discussed for handling the joint occurrence of fixed effects and random measurement errors in an autoregressive panel data model. Finite memory of disturbances, latent regressors and measurement errors is assumed. Two specializations of GMM are...
Persistent link: https://www.econbiz.de/10010330243
This paper investigates the finite sample properties of estimators for spatial dynamic panel models in the presence of several endogenous variables. So far, none of the available estimators in spatial econometrics allows considering spatial dynamic models with one or more endogenous variables....
Persistent link: https://www.econbiz.de/10014047051
I propose Robust Rao’s Score (RS) test statistic to determine endogeneity of spatial weights matrices in a spatial dynamic panel data (SDPD) model (Qu, Lee, and Yu, 2017). I firstly introduce the bias-corrected score function since the score function is not centered around zero due to the...
Persistent link: https://www.econbiz.de/10013491649
The Generalized Method of Moments (GMM) is discussed for handling the joint occurrence of fixed effects and random measurement errors in an autoregressive panel data model. Finite memory of disturbances, latent regressors and measurement errors is assumed. Two specializations of GMM are...
Persistent link: https://www.econbiz.de/10009489019
An autoregressive fixed effects panel data equation in error-ridden endogenous and exogenous variables, with finite memory of disturbances, latent regressors and measurement errors is considered. Finite sample properties of GMM estimators are explored by Monte Carlo (MC) simulations. Two kinds...
Persistent link: https://www.econbiz.de/10009632935
We propose a Bayesian approach to dynamic panel estimation in the presence of cross-sectional dependence and dynamic heterogeneity which is suitable for inference in short panels, unlike alternative estimators. Monte Carlo simulations indicate that our estimator produces less bias, and a lower...
Persistent link: https://www.econbiz.de/10009680588
GMM estimation of autoregressive panel data equations in error-ridden variables when the noise has memory, is considered. The impact of variation in the memory length in signal and noise spread and in the degree of individual heterogeneity are discussed with respect to finite sample bias, using...
Persistent link: https://www.econbiz.de/10010479979