Showing 1 - 10 of 10
We consider a spatial econometric model containing a spatial lag in the dependent variable and the disturbance term with an unknown form of heteroskedasticity in innovations. We first prove that the maximum likelihood (ML) estimator for spatial autoregressive models is generally inconsistent...
Persistent link: https://www.econbiz.de/10014160295
Persistent link: https://www.econbiz.de/10011870743
Persistent link: https://www.econbiz.de/10011792668
Persistent link: https://www.econbiz.de/10012040422
In this study, we introduce adjusted Rao's score test statistics (Lagrange multiplier (LM) tests) for a spatial dynamic panel data (SDPD) model that includes a contemporaneous spatial lag, a time lag and a spatial-time lag. The maximum likelihood estimator for the estimation of SDPD models can...
Persistent link: https://www.econbiz.de/10012931986
Persistent link: https://www.econbiz.de/10012267310
Persistent link: https://www.econbiz.de/10012650664
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to a spatial autoregressive model that has a spatial moving average process in the disturbance term (for short SARMA (1,1)). First, we...
Persistent link: https://www.econbiz.de/10012974451
Most of the estimators suggested for the estimation of spatial autoregressive models are generally inconsistent in the presence of an unknown form of heteroskedasticity in the disturbance term. The estimators formulated from the generalized method of moments (GMM) and the Bayesian Markov Chain...
Persistent link: https://www.econbiz.de/10014145970
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and...
Persistent link: https://www.econbiz.de/10014145971