Showing 1 - 10 of 216
The stochastic frontier analysis (Aigner et al., 1977, Meeusen and van de Broeck, 1977)is widely used to estimate individual efficiency scores. The basic idea lies in the introductionof an additive error term consisting of a noise and an inefficiency term. Most oftenthe assumption of a...
Persistent link: https://www.econbiz.de/10005866198
Stock returns are often modeled as having infinite second or fourth moments with consequences for test statistics which have not yet been fully explored. Conclusions on the existence of moments are usually drawn from a generalized Pareto or simple Pareto tail index estimate. In a recent study...
Persistent link: https://www.econbiz.de/10010316668
The generalized method of moments estimator may be substantially biased in finite samples, especially so when there are large numbers of unconditional moment conditions. This paper develops a class of first order equivalent semi-parametric efficient estimators and tests for conditional moment...
Persistent link: https://www.econbiz.de/10010318448
GEL methods which generalize and extend previous contributions are defined and analysed for moment condition models specified in terms of weakly dependent data. These procedures offer alternative one-step estimators and tests that are asymptotically equivalent to their efficient two-step GMM...
Persistent link: https://www.econbiz.de/10010318470
ExpEnd is a Gauss programme for non-linear generalised method of moments (GMM) estimation of exponential models with endogenous regressors for cross section and panel data. The estimators included in this package are simple Poisson pseudo ML; GMM for cross section data using moment conditions...
Persistent link: https://www.econbiz.de/10010318531
In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a...
Persistent link: https://www.econbiz.de/10010318535
The system GMM estimator for dynamic panel data models combines moment conditions for the model in first differences with moment conditions for the model in levels. It has been shown to improve on the GMM estimator in the first differenced model in terms of bias and root mean squared error....
Persistent link: https://www.econbiz.de/10010318586
This paper presents a generalized moments (GM) approach to estimating an R-th order spatial regressive process in a panel data error component model. We derive moment conditions to estimate the parameters of the higher order spatial regressive process and the optimal weighting matrix required to...
Persistent link: https://www.econbiz.de/10010264361
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM)...
Persistent link: https://www.econbiz.de/10010264566
I consider a panel vector-autoregressive model with cross-sectional dependence of the disturbances characterized by a spatial autoregressive process. I propose a three-step estimation procedure. Its first step is an instrumental variable estimation that ignores the spatial correlation. In the...
Persistent link: https://www.econbiz.de/10010293989