Showing 1 - 7 of 7
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10014185810
Persistent link: https://www.econbiz.de/10009382185
Persistent link: https://www.econbiz.de/10009691169
In this paper we provide a unifed methodology in order to conduct likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10003866080
Andrieu et al. (2010) prove that Markov chain Monte Carlo samplers still converge to the correct posterior distribution of the model parameters when the likelihood is estimated by the particle filter (with a finite number of particles) is used instead of the likelihood. A critical issue for...
Persistent link: https://www.econbiz.de/10012870345
Persistent link: https://www.econbiz.de/10010337864
Persistent link: https://www.econbiz.de/10013367927