Showing 1 - 10 of 15
We propose a Bayesian nonparametric instrumental variable approach that allows us to correct for endogeneity bias in regression models where the covariate effects enter with unknown functional form. Bias correction relies on a simultaneous equations specication with flexible modeling of the...
Persistent link: https://www.econbiz.de/10010358651
Persistent link: https://www.econbiz.de/10010488460
This paper investigates the finite sample performance of a comprehensive set of semi- and nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estimation,...
Persistent link: https://www.econbiz.de/10010467808
Persistent link: https://www.econbiz.de/10011302461
There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the...
Persistent link: https://www.econbiz.de/10002719415
In this paper, we propose a generic Bayesian framework for inference in distributional regression models in which each parameter of a potentially complex response distribution and not only the mean is related to a structured additive predictor. The latter is composed additively of a variety of...
Persistent link: https://www.econbiz.de/10010189552
Generalized additive models for location, scale and shape define a flexible, semi-parametric class of regression models for analyzing insurance data in which the exponential family assumption for the response is relaxed. This approach allows the actuary to include risk factors not only in the...
Persistent link: https://www.econbiz.de/10010190248
In this paper, we propose a unified Bayesian approach for multivariate structured additive distributional regression analysis where inference is applicable to a huge class of multivariate response distributions, comprising continuous, discrete and latent models, and where each parameter of these...
Persistent link: https://www.econbiz.de/10010200433
Structured additive regression (STAR) models provide a flexible framework for modeling possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models (GLM) and generalized additive models (GAM) as special cases but also allow a wider class of...
Persistent link: https://www.econbiz.de/10009742080
Frequent problems in applied research that prevent the application of the classical Poisson log-linear model for analyzing count data include overdispersion, an excess of zeros compared to the Poisson distribution, correlated responses, as well as complex predictor structures comprising...
Persistent link: https://www.econbiz.de/10009748670