Showing 1 - 10 of 17
This work proposes new inference methods for the estimation of a regression coefficient of interest in quantile regression models. We consider high-dimensional models where the number of regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable...
Persistent link: https://www.econbiz.de/10010227497
This work proposes new inference methods for the estimation of a regression coefficient of interest in quantile regression models. We consider high-dimensional models where the number of regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable...
Persistent link: https://www.econbiz.de/10010462848
We propose a new nonparametric test of stochastic monotonicity which adapts to the unknown smoothness of the conditional distribution of interest, possesses desirable asymptotic properties, is conceptually easy to implement, and computationally attractive. In particular, we show that the test...
Persistent link: https://www.econbiz.de/10011812348
We propose a new nonparametric test of stochastic monotonicity which adapts to the unknown smoothness of the conditional distribution of interest, possesses desirable asymptotic properties, is conceptually easy to implement, and computationally attractive. In particular, we show that the test...
Persistent link: https://www.econbiz.de/10012217010
We propose a new nonparametric test of stochastic monotonicity which adapts to the unknown smoothness of the conditional distribution of interest, possesses desirable asymptotic properties, is conceptually easy to implement, and computationally attractive. In particular, we show that the test...
Persistent link: https://www.econbiz.de/10012109829
Persistent link: https://www.econbiz.de/10012593446
Persistent link: https://www.econbiz.de/10002114357
Persistent link: https://www.econbiz.de/10001768317
This paper studies the computational complexity of Bayesian and quasi-Bayesian estimation in large samples carried out using a basic Metropolis random walk. The framework covers cases where the underlying likelihood or extremum criterion function is possibly non-concave, discontinuous, and of...
Persistent link: https://www.econbiz.de/10014052489
This paper studies computationally and theoretically attractive estimators referred here as to the Laplace type estimators (LTE). The LTE include means and quantiles of Quasi-posterior distributions defined as transformations of general (non-likelihood-based) statistical criterion functions,...
Persistent link: https://www.econbiz.de/10014077734