Showing 1 - 10 of 10
Multivariate distributional forecasts have become widespread in recent years. To assess the quality of such forecasts, suitable evaluation methods are needed. In the univariate case, calibration tests based on the probability integral transform (PIT) are routinely used. However, multivariate...
Persistent link: https://www.econbiz.de/10014261693
Persistent link: https://www.econbiz.de/10014283270
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10010296235
We propose a dynamic factor model for the analysis of multivariate time series count data. Our model allows for idiosyncratic as well as common serially correlated latent factors in order to account for potentially complex dynamic interdependence between series of counts. The model is estimated...
Persistent link: https://www.econbiz.de/10010296304
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
Persistent link: https://www.econbiz.de/10009714192
Persistent link: https://www.econbiz.de/10008910010
Persistent link: https://www.econbiz.de/10009159117
Persistent link: https://www.econbiz.de/10003355771
We propose a dynamic factor model for the analysis of multivariate time series count data. Our model allows for idiosyncratic as well as common serially correlated latent factors in order to account for potentially complex dynamic interdependence between series of counts. The model is estimated...
Persistent link: https://www.econbiz.de/10003738598