Showing 1 - 10 of 17
This paper compares two single-equation approaches from the recent nowcast literature: Mixed-data sampling (MIDAS) regressions and bridge equations. Both approach are used to nowcast a low-frequency variable such as quarterly GDP growth by higher-frequency business cycle indicators. Three...
Persistent link: https://www.econbiz.de/10010432327
Mixed-data sampling (MIDAS) regressions allow to estimate dynamic equations that explain a low-frequency variable by high-frequency variables and their lags. To account for temporal instabilities in this relationship, this paper discusses an extension to MIDAS with time-varying parameters, which...
Persistent link: https://www.econbiz.de/10010481353
Persistent link: https://www.econbiz.de/10003983882
Persistent link: https://www.econbiz.de/10003897086
Mixed-data sampling (MIDAS) regressions allow to estimate dynamic equations that explain a low-frequency variable by high-frequency variables and their lags. When the difference in sampling frequencies between the regressand and the regressors is large, distributed lag functions are typically...
Persistent link: https://www.econbiz.de/10009490826
Persistent link: https://www.econbiz.de/10009247409
Persistent link: https://www.econbiz.de/10003913410
Persistent link: https://www.econbiz.de/10009512876
This paper compares the mixed-data sampling (MIDAS) and mixed-frequency VAR (MF-VAR) approaches to model speci.cation in the presence of mixed-frequency data, e.g., monthly and quarterly series. MIDAS leads to parsimonious models based on exponential lag polynomials for the coeØ cients, whereas...
Persistent link: https://www.econbiz.de/10003815492
Persistent link: https://www.econbiz.de/10003887161