Showing 1 - 10 of 1,304
This paper develops an early warning system for predicting distress for large European banks. Using a novel definition of distress derived from banks' headroom above regulatory requirements, we investigate the performance of three machine learning techniques against the traditional logistic...
Persistent link: https://www.econbiz.de/10015185208
We propose an automatic machine-learning system to forecast realized volatility for S&P 100 stocks using 118 features and five machine learning algorithms. A simple average ensemble model combining all learning algorithms delivers extraordinary performance across forecast horizons, and the...
Persistent link: https://www.econbiz.de/10013234262
This research aims at exploring whether simple trading strategies developed using state-ofthe-art Machine Learning (ML) algorithms can guarantee more than the risk-free rate of return or not. For this purpose, the direction of S&P 500 Index returns on every 6th day (SPYRETDIR6) and magnitude of...
Persistent link: https://www.econbiz.de/10012432999
We use machine learning methods to predict stock return volatility. Our out-of-sample prediction of realised volatility for a large cross-section of US stocks over the sample period from 1992 to 2016 is on average 44.1% against the actual realised volatility of 43.8% with an R2 being as high as...
Persistent link: https://www.econbiz.de/10012800743
This study examines the application of machine learning models to predict financial performance in various sectors, using data from 21 companies listed in the BIST100 index (2013-2023). The primary objective is to assess the potential of these models in improving financial forecast accuracy and...
Persistent link: https://www.econbiz.de/10015393631
Persistent link: https://www.econbiz.de/10013261996
Persistent link: https://www.econbiz.de/10012052936
Persistent link: https://www.econbiz.de/10014331444
Persistent link: https://www.econbiz.de/10013274258
Persistent link: https://www.econbiz.de/10012649244