Showing 1 - 10 of 34
In a recent paper Gonzalez Manteiga and Vilar Fernandez (1995) considered the problem of testing linearity of a regression under MA structure of the errors using a weighted L1-distance between a parametric and a nonparametric fit. They established asymptotic normality of the corresponding test...
Persistent link: https://www.econbiz.de/10009783008
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10009767261
Persistent link: https://www.econbiz.de/10011974652
Persistent link: https://www.econbiz.de/10012304908
Motivated by Chaudhuri's work (1996) on unconditional geometric quantiles, we explore the asymptotic properties of sample geometric conditional quantiles, defined through kernel functions, in high dimensional spaces. We establish a Bahadur type linear representation for the geometric conditional...
Persistent link: https://www.econbiz.de/10010325602
Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. This is done by showing joint asymptotic normality for the estimation of the volatility, the drift, the intensity and the Lévy...
Persistent link: https://www.econbiz.de/10010281561
Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10010288343
An extended single-index model is considered when responses are missing at random. A three-step estimation procedure is developed to define an estimator for the single index parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptotically normal. An iterative...
Persistent link: https://www.econbiz.de/10010225739
We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish...
Persistent link: https://www.econbiz.de/10009620324
Persistent link: https://www.econbiz.de/10010470123