Showing 1 - 10 of 12
This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (delta) in the asymptotic variance and finding closed form formula of it, where...
Persistent link: https://www.econbiz.de/10010263412
A data-driven bandwidth selection method for backfitting estimation of semiparametric additive models, when the parametric part is of main interest, is proposed. The proposed method is a double smoothing estimator of the mean-squared error of the backfitting estimator of the parametric terms....
Persistent link: https://www.econbiz.de/10011056600
Persistent link: https://www.econbiz.de/10004993142
This paper summarizes recent developments in non- and semiparametric regres- sion with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the...
Persistent link: https://www.econbiz.de/10005562301
Persistent link: https://www.econbiz.de/10005184306
This paper summarizes recent developments in non- and semiparametric regres- sion with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the...
Persistent link: https://www.econbiz.de/10010324094
This paper summarizes recent developments in non- and semiparametric regression with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the dependence...
Persistent link: https://www.econbiz.de/10011544974
We introduce and compare several robust procedures for bandwidth selection when estimating the variance function. These bandwidth selectors are to be used in combination with the robust scale estimates introduced by Boente et al. (2010a). We consider two different robust cross-validation...
Persistent link: https://www.econbiz.de/10011056610
Our goal is to predict a scalar value or a group membership from the discretized observation of curves with sharp local features that might vary both vertically and horizontally. To this aim, we propose to combine the use of the nonparametric functional regression estimator developed by Ferraty...
Persistent link: https://www.econbiz.de/10011041886
Persistent link: https://www.econbiz.de/10011483412