Showing 1 - 10 of 35
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This...
Persistent link: https://www.econbiz.de/10009406237
We approximate the error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. We investigate the construction of a likelihood and posterior for bandwidth parameters under this...
Persistent link: https://www.econbiz.de/10009406374
Persistent link: https://www.econbiz.de/10009775496
Persistent link: https://www.econbiz.de/10010189540
Persistent link: https://www.econbiz.de/10010189546
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function...
Persistent link: https://www.econbiz.de/10011506243
Bandwidth plays an important role in determining the performance of local linear estimators. In this paper, we propose a Bayesian approach to bandwidth selection for local linear estimation of time-varying coefficient time series models, where the errors are assumed to follow the Gaussian kernel...
Persistent link: https://www.econbiz.de/10013086871
Persistent link: https://www.econbiz.de/10009713007
Persistent link: https://www.econbiz.de/10009565478
Persistent link: https://www.econbiz.de/10010515873