Showing 1 - 10 of 14
We consider the partially linear model relating a response Y to predictors (X,T) with mean function XT β + g(T) when the T's are measured with additive error. We derive an estimator of β by modification local-likelihood method. The resulting estimator of β is shown to be asymptotically...
Persistent link: https://www.econbiz.de/10009657894
This textbook emphasizes the applications of statistics and probability to finance. Students are assumed to have had a prior course in statistics, but no background in finance or economics. The basics of probability and statistics are reviewed and more advanced topics in statistics, such as...
Persistent link: https://www.econbiz.de/10001805902
We consider the partially linear model relating a response Y to predictors (X,T) with mean function XT ß + g (T) when the X's are measured with additive error. The semiparametric likelihood estimate of Severini and Staniswalis (1994) leads to biased estimates of both the parameter ß and the...
Persistent link: https://www.econbiz.de/10009657130
Persistent link: https://www.econbiz.de/10009659060
Persistent link: https://www.econbiz.de/10010343732
Persistent link: https://www.econbiz.de/10012304591
Persistent link: https://www.econbiz.de/10002029382
Persistent link: https://www.econbiz.de/10002242130
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric...
Persistent link: https://www.econbiz.de/10009631744
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10009631749