Showing 1 - 10 of 1,325
Persistent link: https://www.econbiz.de/10009666667
Persistent link: https://www.econbiz.de/10012207443
A novel, general two-sample hypothesis testing procedure is established for testing the equality of tail copulas associated with bivariate data. More precisely, using an ingenious transformation of a natural two-sample tail copula process, a test process is constructed, which is shown to...
Persistent link: https://www.econbiz.de/10013220179
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares...
Persistent link: https://www.econbiz.de/10012814196
We derive a nonparametric test for constant (continuous) beta over a fixed interval of time. Continuous beta is defined as the ratio of the continuous covariation between an asset and observable risk factor (e.g., the market return) and the continuous variation of the latter. Our test is based...
Persistent link: https://www.econbiz.de/10010253467
Persistent link: https://www.econbiz.de/10001645859
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10014178851
We introduce a statistical test for comparing the predictive accuracy of competing copula specifications in multivariate density forecasts, based on the Kullback-Leibler Information Criterion (KLIC). The test is valid under general conditions: in particular it allows for parameter estimation...
Persistent link: https://www.econbiz.de/10014047091
In non- and semiparametric testing, the wild bootstrap is a standard method to determine the critical values of the test. While there exists an increasing literature on how to find a proper smoothing parameter for the nonparametric alternative, almost nothing is known how to choose a smoothing...
Persistent link: https://www.econbiz.de/10014048394
We introduce tests for finite-sample linear regressions with heteroskedastic errors. The tests are exact, i.e., they have guaranteed type I error probabilities when bounds are known on the range of the dependent variable, without any assumptions about the noise structure. We provide upper bounds...
Persistent link: https://www.econbiz.de/10014197050